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Polarimetric SAR Image Filtering Based on Patch
Ordering and Simultaneous Sparse Coding

Bin Xu, Yi Cui, Member, IEEE, Bin Zuo, Jian Yang, Senior Member, IEEE, and Jianshe Song

Abstract—In this paper, a transform-domain filtering method
is proposed for polarimetric synthetic aperture radar (POLSAR)
images via patch ordering and simultaneous sparse coding (SSC).
First of all, we establish a signal-dependent additive noise model
for the POLSAR covariance matrix and derive the noise variance
for each element of the matrix based on the complex Wishart
distribution. Next, we propose an extended patch ordering al-
gorithm for POLSAR images by extracting sliding patches and
organizing them in a regular way. Then, the ordered patches
are filtered by SSC, for the purpose of which we develop a new
weighted simultaneous orthogonal matching pursuit algorithm
by embedding the signal-dependent noise model of the POLSAR
data. Finally, the filtering result is reconstructed from the filtered
patches via inverse permutation and subimage averaging. Exper-
imental results with both simulated and real POLSAR images
demonstrate that the proposed method can achieve state-of-the-art
filtering performance.

Index Terms—Patch ordering, polarimetric synthetic aperture
radar (POLSAR), simultaneous sparse coding (SSC), speckle
filtering.

I. INTRODUCTION

POLARIMETRIC synthetic aperture radar (POLSAR) is
a very important microwave remote sensing technique

which is capable of acquiring a high-resolution and multidi-
mensional image of the earth terrain in different wave polar-
ization channels. However, the applications of POLSAR are
often affected by a noiselike phenomenon, called speckle, as
originated from its coherent imaging nature. During the past
years, many methods have been proposed to reduce the speckle
in POLSAR imagery. The boxcar filter is widely used because
of its simplicity. However, its performance has not been satisfy-
ing due to indiscriminate averaging. Lee et al. [1], [2] used the
minimum-mean-square-error criterion to filter the covariance or
coherency matrices. In the refined Lee filter [2], the pixels in
edged aligned windows are selected for weighted averaging.
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Unlike the refined Lee filter, the intensity-driven adaptive-
neighborhood (IDAN) filter [3] selects a group of stationary
pixels surrounding the estimated pixel by using the diagonal
elements of the covariance or coherency matrices. To obtain ho-
mogeneous pixels effectively, the scattering model-based filter
[4] selects the pixels which correspond to the same scattering
mechanism as the estimated pixel in a square window. Other
classical filters also include the model-based POLSAR filter
[5] which is on the basis of the multiplicative–additive speckle
noise model [6], the subspace decomposition-based filter [7],
the trace-based filter [8], and so on.

The nonlocal means (NLM) algorithm [9] provides a new
way to tackle the filtering problem, and this method has been
extended to POLSAR image filtering. Deledalle et al. adapted
the probabilistic patch-based algorithm [10] proposed in SAR
image despeckling to POLSAR imagery and proposed the non-
local framework for SAR denoising (NLSAR) [11]. Chen et al.
[12] proposed the NLM-pretest filter by using the test statistic
[13] in the complex Wishart distribution. Torres et al. [14]
proposed the SDNLM filter with stochastic distances. Liu and
Zhong [15] proposed the NLM-DSM filter based on discrimina-
tive similarity measure. All these methods adopt the framework
of the NLM but use different similarity measurements.

Most recently, advances in state-of-the-art signal processing
techniques, particularly the sparse representation [16]–[18],
have opened an exciting new vision for image denoising. In
[16], Elad and Aharon proposed a novel image filtering method
using sparse representations over learned dictionaries. Then,
this method was adapted to color image filtering [17]. In [18],
Mairal et al. combined the nonlocal method and simultaneous
sparse coding (SSC) and then proposed the nonlocal sparse
model. Sparse representation has already been used for de-
speckling single-channel SAR images [19]–[21]. In our pre-
vious work [21], we proposed a SAR image filtering method
which is based on SSC, wavelet transform, and patch ordering,
a newly proposed scheme by Ram et al. [22]. However, to
the best of our knowledge, applying sparse representation to
POLSAR image filtering still remains a challenging problem,
and very few works have been previously reported toward this
purpose. There are probably twofold reasons. On the one hand,
SAR speckle is intrinsically of multiplicative nature such that
the noise level is no longer independent of the underlying sig-
nal. On the other hand, POLSAR data have multiple channels,
and the speckle not only appears in respective intensity images
but is also present in their complex correlation. Such a fact
invalidates the common approach of logarithmic transformation
which only transforms the multiplicative noise of the real
intensity into an additive one.
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This paper is therefore dedicated as a first attempt for POL-
SAR image filtering using sparse representation. It is also based
on patch ordering and SSC, which have already been used
in our previous work [21]. However, the proposed method is
different from our previous work [21] in the following three
aspects. First, unlike the logarithmic transformation used in
[21], we adopt a signal-dependent additive noise model for the
full POLSAR data based on the complex Wishart distribution.
Second, the original patch ordering algorithm is extended to
POLSAR images based on the test statistic in the complex
Wishart distribution. Third, we perform transform-domain fil-
tering via simultaneous sparse representation for nonuniform
noise due to the nature of the speckle in POLSAR imagery.

The rest of this paper is organized as follows. Section II
presents the POLSAR data statistics and the additive noise
model. Section III presents the patch ordering for POLSAR
images and SSC for nonuniform noise. Section IV describes the
proposed algorithm and parameter selection. Section V reports
the experimental results. Section VI discusses the effect of
strong point detection, several parameters, and time consump-
tion. Finally, Section VII concludes this paper.

II. POLSAR DATA STATISTICS AND

ADDITIVE NOISE MODEL

A. POLSAR Data

A single-look POLSAR data set measures, for each reso-
lution cell (pixel), the Sinclair scattering matrix, which is a
2 × 2 complex matrix. In the linear horizontal and vertical
polarization base, this matrix can be expressed by

S =

[
Shh Shv

Svh Svv

]
. (1)

Here, Skl stands for the scattering coefficient of k-transmitting
and l-receiving polarizations. In general, the reciprocity holds,
and the scattering matrix is symmetrical, i.e., Shv = Svh. Then,
in the single-look case, the scattering information can be also
represented by a complex vector

u =
[
Shh

√
2Shv Svv

]T
(2)

where the superscript “T ” stands for the transpose. In the
multilook case, the scattering information can be represented
by the covariance matrix C

C = 〈uuH〉

=

⎡
⎣

〈
|Shh|2

〉 〈√
2ShhS

∗
hv

〉
〈ShhS

∗
vv〉〈√

2ShvS
∗
hh

〉 〈
2|Shv|2

〉 〈√
2ShvS

∗
vv

〉
〈SvvS

∗
hh〉

〈√
2SvvS

∗
hv

〉 〈
|Svv|2

〉
⎤
⎦ (3)

where “〈·〉” is the ensemble average, the superscript “H” is
the conjugate transpose, and the superscript “∗” is the complex
conjugate. The SPAN (or total power) is expressed as

SPAN = Tr(C) (4)

where Tr() is the trace of a matrix.

It is well established that, with finite-look averaging, the
covariance matrix follows the complex Wishart distribution
[23], [24]

pC(C) =
LqL|C|L−q exp

[
−LTr(Σ−1C)

]
K(L, q)|Σ|L (5)

where L is the equivalent number of looks (ENL), q is the
dimension of u, Σ is the expectation of C, and K is a nor-
malization factor. It should be noted that the ENL can be easily
estimated from a homogeneous region by [25]

L̂ =
Tr (〈C〉)2

〈Tr(CC)〉 − Tr (〈C〉〈C〉) . (6)

B. Additive Noise Model

The purpose of POLSAR filtering is to reconstruct Σ from
the noisy observable C. The speckle statistics depends on the
complex correlation coefficient, and the noise statistics of the
off-diagonal terms is different from that of the diagonal terms.
Thus, how to denoise the off-diagonal terms of C is a challeng-
ing topic in POLSAR image filtering. In this paper, we adopt
an additive noise model which regards the speckle as a signal-
dependent additive noise.

In general, the diagonal terms of C can be characterized by
the multiplicative noise model [23]. For example

C11 = Σ11w (7)

where w is characterized by unit-mean gamma distribution.
Furthermore, (7) can be also written in an additive but signal-
dependent way [26], [27]

C11 = Σ11 + Z11 (8)

where Z11 is the signal-dependent additive noise of C11

Z11 = Σ11(w − 1). (9)

The off-diagonal terms of C are characterized by a combina-
tion of the additive and multiplicative noise model [6] and can
also be written in the same way as shown in (8). Thus, we have

C = Σ+ Z (10)

where Z is the signal-dependent additive noise of C.
Here, Z has zero mean. The variances of the diagonal terms

of Z are

var[Zkk] =
Σ2

kk

L
. (k = 1, 2, 3). (11)

The variances of the off-diagonal terms of Z are

var [Re(Zkl)] =
1

2L

[
Re(Σkl)

2 − Im(Σkl)
2 +ΣkkΣll

]
var [Im(Zkl)] =

1

2L

[
Im(Σkl)

2 − Re(Σkl)
2 +ΣkkΣll

]
.

(k, l) ∈ {(1, 2), (1, 3), (2, 3)} . (12)

The derivations of (11) and (12) can be found in [28]. In
Appendix A, we also present the derivations of (11) and (12)
in a new way by using the characteristic function [24].
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Fig. 1. Example of strong isolated point detection. (a) 12 × 12 POLSAR image
patch. (b) SPAN of (a). (c) SPANmed of (a). B2 = 5. (d) Detection result of (a).
λ = 5.

Thus, if we have Σ, we can estimate the noise variance. An
intuitive way to estimate Σ is applying a B1 ×B1 boxcar filter
to the input POLSAR image. However, the noise variance will
be overestimated around strong isolated points. To avoid the
overestimation, the values of strong isolated points are set to
zeros before the noise variance estimation. In this way, the noise
variance around strong isolated points will be underestimated.
Thus, we can get good point target preserving ability which will
be shown in Section V.

To detect strong isolated points, we first apply a B2 ×B2

median filter to the SPAN of the input POLSAR image. Let
SPANmed be the median filtering result. Then, a pixel is con-
sidered as strong isolated points if

SPAN
SPANmed

> λ (13)

where λ is a predefined threshold. In this paper,B1= 5,B2= 5,
and λ = 5 (for the detail of parameter selection, please refer
to Section IV). Fig. 1 presents an example of strong isolated
point detection. Fig. 1(b) and (c) are the SPAN and SPANmed

of Fig. 1(a), respectively. Strong pixels are removed in Fig. 1(c).
Thus, (13) can be used to detect strong points. In Fig. 1(d), we
can also find that strong isolated pixels are well detected.

Suppose that the matrices C, Σ, and Z can be respectively
rewritten in the vector form as (14)–(16), shown at the bottom
of the page.

Thus, we can treat each pixel of the POLSAR image as a 1× 9
vector. Then, the additive noise model can be rewritten as follows:

c = s+ z. (17)

This additive noise model is adopted in the subsequent filtering
method.

III. PATCH ORDERING AND SSC

A. Patch Ordering for POLSAR Images

For an N1 ×N2 POLSAR image, we extract the sliding
patches of size n× n. The number of patches is

N (p) =

(⌈
N1 − n

SL

⌉
+ 1

)(⌈
N2 − n

SL

⌉
+ 1

)
(18)

where SL is the sliding step and �·� is the ceil function.

Based on the test statistic [13] in the complex Wishart dis-
tribution, Chen et al. [12] derived the similarity of two patches
P1(i) (i = 1, 2, . . . , n2) and P2(i) (i = 1, 2, . . . , n2)

H=

n2∑
i=1

(ln |P1(i)|+ln |P2(i)|−2 ln |P1(i)+P2(i)|) . (19)

It should be noted that the determinant of a covariance matrix
may be zero when L ≤ 2. In this case, (19) makes no sense. To
solve this problem, we first apply a 3 × 3 boxcar filter to the
input POLSAR image. Then, we use the boxcar filtering result
IB to calculate the similarity of two patches.

As stated in [21] and [22], patch ordering aims to reorder
the sliding patches by using the similarity between the patches.
The similarity between neighboring ordered patches is very
high; thus, SSC is very suitable for ordered patches. The
original patch ordering method [22] proposed for additive white
Gaussian noise can be easily adapted to POLSAR images by
replacing the Euclidean distance with (19). The patch ordering
algorithm for POLSAR images is given in Algorithm 1.

Algorithm 1 Patch ordering algorithm for POLSAR images.

Input: The image patches Pk (k = 1, . . . , N (p)).
Parameter: The search range R×R.

Set the first patch to be the initial patch, i.e., Ω(1) = 1.
for k = 1 to N (p) − 1 do

Let PΩ(k) and SRk be the current patch and the set of
indices of the search range around PΩ(k), respectively.
if |SRk \ Ω| ≥ 1,1 then

Calculate the similarity of Pl and PΩ(k) by (19),
where l ∈ SRk \ Ω. Choose the patch Pl̂ which is the
most similar to PΩ(k).

else
Choose the spatially nearest patch Pl̂ to Pl.

end if
Ω(k + 1) = l̂

end for
Output: The set Ω which holds the ordering.

Since each pixel of the POLSAR image can be treated as a
1 × 9 vector, the n× n patch can be considered as nine n2 × 1
vectors qi (i = 1, . . . , 9) or n2 × 9 matrix Q

Q = [q1 · · · q9]. (20)

Let X and Y be the patches before and after patch ordering,
respectively

X =
[
Q1 · · · QN(p)

]
(21)

Y =
[
Q

(p)
1 · · · Q

(p)

N(p)

]
. (22)

1Here, | · | is the number of elements within a set and “\” is the set difference.

c =
[
C11 C22 C33 Re(C12) Re(C13) Re(C23) Im(C12) Im(C13) Im(C23)

]
(14)

s =
[
Σ11 Σ22 Σ33 Re(Σ12) Re(Σ13) Re(Σ23) Im(Σ12) Im(Σ13) Im(Σ23)

]
(15)

z =
[
Z11 Z22 Z33 Re(Z12) Re(Z13) Re(Z23) Im(Z12) Im(Z13) Im(Z23)

]
(16)
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Then, the subsequent filtering method will work on the ordered
patches Y.

B. Filtering via SSC

1) Sparse Coding: Sparse coding [16] is very useful in im-
age filtering. It assumes that the clean signal can be represented
by a linear combination of few atoms in a redundant dictionary.
The sparse model [16] for uniform noise is

min
αi

‖αi‖0 s.t. ‖yi −Dαi‖22 ≤ n2(γσ)2 (23)

where the size of the patch is n× n, yi∈R
n2

is the column vec-
tor in Y and stands for the noisy signal, D ∈ R

n2×K(K > n2)
is an overcomplete dictionary, αi ∈ R

K is the sparse repre-
sentation of yi, σ is the noise standard deviation, and γ is
a predefined parameter controlling the depth of filtering. The
sparse coding problem (23) can be solved by the orthogonal
matching pursuit (OMP) algorithm [29], and the filtering result
of yi is

ŷi = Dα̂i. (24)

In general, most of the image filtering methods are designed
for uniform noise. However, from (11) and (12), we can find
that the noise is nonuniform for POLSAR images. Thus, we
should adopt the sparse model [17] for nonuniform noise

min
αi

‖αi‖0 s.t.

∥∥∥∥ 1

σi
⊗ (yi −Dαi)

∥∥∥∥
2

2

≤ n2γ2 (25)

where σi ∈ R
n2

is the noise standard deviation corresponding
to yi, 1/σi is the elementwise reciprocal of σi, and ⊗ denotes
the elementwise multiplication between two vectors. This prob-
lem can also be solved by the OMP algorithm.

In fact, the problem (23) can be written in the following form:

min
αi

‖αi‖0 s.t.

∥∥∥∥ 1σ (yi −Dαi)

∥∥∥∥
2

2

≤ n2γ2. (26)

Thus, we can easily obtain the sparse model for nonuniform
noise from the uniform case by replacing (1/σ)(yi −Dαi)
with (1/σi)⊗ (yi −Dαi).

2) SSC: The core idea of SSC is that several similar signals
can be represented by different linear combinations of the same
atoms. For uniform noise, denoising several similar signals yi

(i ∈ G) amounts to solving

min
Λ

‖Λ‖0,∞ s.t.
∑
i∈G

‖yi −Dαi‖22 ≤ mn2(γσ)2 (27)

where G is the group of similar signals, m is the number of
signals in set G, Λ is

Λ = (· · ·αi · · · )i∈G (28)

and ‖Λ‖0,∞ is a pseudonorm [30] which denotes the number
of nonzero rows of Λ. For POLSAR images, each patch can

be considered as nine correlated signals. Since these correlated
signals are acquired in the same region, they have high simi-
larity. Moreover, the similarity of neighboring patches in Y is
also very high. Thus, we use N (G) neighboring patches to form
a group, and each group has 9N (G) signals, i.e., m = 9N (G).
The SSC problem (27) can be solved by the simultaneous OMP
(S-OMP) algorithm [30], [31].

In the same way, the simultaneous sparse model for nonuni-
form noise is

min
Λ

‖Λ‖0,∞ s.t.
∑
i∈G

∥∥∥∥ 1

σi
⊗ (yi −Dαi)

∥∥∥∥
2

2

≤ mn2γ2. (29)

To solve this problem, we just need to modify the S-OMP algo-
rithm with the consideration of σi. The detail of the modified
S-OMP algorithm is shown in Algorithm 2. The modification
is very simple, and we will not go deep into the discussion
of this modification. Since the noise in POLSAR images is
nonuniform, we will use the simultaneous sparse model for
nonuniform noise to filter the noisy patches Y.

Algorithm 2 The modified S-OMP algorithm.

Task: Approximate the solution of (29).
Input: The dictionary D = [d1, . . . ,dK ], the signals yi (i =
1, . . . ,m), the noise standard deviation σi (i = 1, . . . ,m)
corresponding to yi.

Initialization: Initialize l = 0, and set
the initial solution α0

i = 0 (i = 1, . . . ,m),
the initial solution support Ω0 = Support{α0

1} = ∅,
the initial residual r0i = (1/σi)⊗ yi (i = 1, . . . ,m).

Main Iteration:
while

∑m
i=1 ‖rli‖

2
2 > mn2 do

for k = 1 to K do
for i = 1 to m do
d̂k = σi ⊗ dk.
Compute the error ε(k, i) = mint ‖d̂kt− rli‖

2

2

using the optimal choice t = d̂T
k r

l
i/‖d̂k‖

2

2.
end for
Compute the error ε′(k) =

∑m
i=1 ε(k, i).

end for
l ⇐ l + 1.
k̂ = argmink ε

′(k), and update Ωl = Ωl−1 ∪ {k̂}.
for i = 1 to m do

for k = 1 to K do
d̂k = σi ⊗ dk.

end for
Get the new dictionary D̂ = [d̂1, . . . , d̂K ], and update
the solution,
αl

i = argminαi
‖(1/σi)⊗ yi − D̂αi‖

2

2 s.t. Support
{αi} = Ωl.
Update the residual rli = (1/σi)⊗ (yi −Dαl

i).
end for

end while
Get the final result α̂i = αl

i (i = 1, . . . ,m).
Output: The coefficients α̂i.



XU et al.: POLARIMETRIC SAR IMAGE FILTERING BASED ON PATCH ORDERING AND SSC 4083

Fig. 2. Flowchart of the proposed algorithm.

TABLE I
PARAMETERS USED IN THE PROPOSED ALGORITHM

IV. ALGORITHM AND PARAMETER SELECTION

In this paper, we propose a new POLSAR image filtering
method based on patch ordering and SSC. First, the noise
variance is estimated. Then, we extract the sliding patches and
order them. The ordered patches are filtered by SSC. Then,
the final filtering result can be reconstructed from the filtered
patches via inverse permutation and subimage averaging [22].
The proposed method is hierarchically illustrated in Fig. 2 and
summarized in Algorithm 3. Table I lists the parameters used
in this algorithm. These parameters have been tested and found
effective over a variety of simulated and real POLSAR images
and will be fixed for performance evaluation in Section V.

Algorithm 3 The proposed algorithm for POLSAR image
filtering.

Input: The input POLSAR image I , the ENL L.
Noise variance estimation:

Detect strong points of I by (13) and obtain the new image I ′

by setting the values of strong points to zeros.
Apply a B1 ×B1 boxcar filter to I ′ to estimate Σ.
Estimate the noise variance using (11) and (12), and then
compute the noise standard deviation.

Patch extracting:
Apply a 3 × 3 boxcar filter to I and obtain the filtering
result IB .
Extract the sliding patches X and XB of size n× n from I
and IB , respectively.

Patch ordering:
Order the patches XB by Algorithm 1, and obtain the set Ω.
Perform permutation on X with the order Ω, and get the
ordered patches Y.

TABLE II
VALUES OF λ FOR DIFFERENT L AND Pfa

Filtering via SSC:
Use N (G) neighboring patches of Y to form a group.
Perform SSC on each group. The SSC problem (29) is
solved by Algorithm 2.
Obtain the filtered patches Ŷ.

Inverse permutation:
Perform inverse permutation on Ŷ and obtain the patches X̂

Subimage averaging:
Reconstruct the final filtering result Î from X̂ by subimage

averaging [22].
Output: The final filtering result Î .

In the stage of noise variance estimation, there are three
parameters to be set, the size of the boxcar filter B1, the size
of the median filter B2, and the threshold λ. The size of the
filter should not be too large since it may lead to big biases in
noise variance estimation. In this paper, we assume that most
of the areas in 5 × 5 windows can be regarded as homogenous
areas. This assumption is also consistent with the size of the
boxcar filter used in POLSAR image filtering [12], [23], [33].
Thus, we set B1 = 5 and B2 = 5. The threshold λ is used to
detect strong isolated points. The selection of λ is related to
the ENL of the noisy image and the corresponding application.
Table II provides the relationship between λ, L, and the false
alarm probability (Pfa). From (13), we can find that it is very
difficult to get this relationship in theory. Thus, we just use the
Monte Carlo simulation method [23] to obtain the relationship
in Table II. When L ≥ 2, the false alarm probability can reach
10−5 if we set λ ≥ 4.21. In the case of L = 1 and Pfa = 10−5,
λ should be 7.23. If weak points should also be preserved,
then the false alarm probability can be set to be 10−3 or 10−2.
The corresponding λ can be set to be around 3. In this paper,
we simply set λ = 5 which can ensure that Pfa < 10−3 when
L = 1 and Pfa < 10−5 when L ≥ 2.

In [16], Elad and Aharon suggested to adopt 8 × 8 patches
when using sparse representation to denoise images. Moreover,
from (19), we can find that 8 × 8 patches can ensure the
accuracy of the similarity of two patches and thus ensure the
accuracy of patch ordering. If the ENL is small, one can choose
bigger patches, such as 10 × 10 or 12 × 12. However, big
patches will significantly increase the computing time of SSC.
Thus, here, we select 8 × 8 patches, i.e., n = 8. From (18),
we have

N (p)
∣∣∣
SL=2

≈ 1

4
N (p)

∣∣∣
SL=1

. (30)

The computing time of the proposed method is proportional
to the number of image patches. Thus, when SL = 2, the
computing time is only a quarter of the computing time when
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Fig. 3. Test POLSAR images displayed with Pauli decomposition coefficients.
The pixels in the white box are used for ENL estimation. (a) San Francisco
(400 × 400), L = 2.91. The pixels in the red box are used to analyze the
ratio image. (b) Flevoland (400 × 600), L = 2.97. The whole image is used to
analyze the ratio image.

SL = 1. In Section VI, we will verify this point with real data.
Moreover, we will also show that the influence on the filtering
performance is very small if SL = 2. Thus, the sliding step SL
is set to be 2. In Algorithm 1, the search range R is 17, which
is the same as that in [21]. In the SSC stage, we employ the
overcomplete DCT dictionary [16] of size 64 × 256 and use
eight patches to form a group. Thus, K = 256, and N (G) = 8.
It should be noted that the learned dictionary will be more
suitable for SSC. However, dictionary learning in the context
of nonuniform noise is still a challenging problem. Thus, in
this paper, we simply adopt the DCT dictionary. The parameter
γ is very important and determines the balance between detail
preservation and speckle removal. When γ is large, the speckle
reduction ability is strong while the detail preserving ability
is weak. The selection of γ depends on the size of the patches
and the probability density function (pdf) of the additive noise.
However, it is very hard to set γ theoretically since the pdf of the
additive noise in POLSAR imagery is very complex. We find
that γ = 1 is a simple but effective choice in the experiments.

V. EXPERIMENTAL RESULTS

In this section, both simulated and real POLSAR images
are used to demonstrate the effectiveness of the proposed
method. The simulated image is generated by the Monte Carlo
simulation method proposed by Lee et al. [23], [32]. Thus, the
simulated speckle is fully developed and follows the complex
Wishart distribution. We also use two four-look AIRSAR im-
ages to test the filtering performance of the proposed method for
real POLSAR data. The first image [see Fig. 3(a)] is taken over
San Francisco in America, and a region of 400 × 400 pixels
is selected. The second image [see Fig. 3(b)] is taken over
Flevoland in the Netherlands, and a region of 400 × 600 pixels
is selected.

The proposed method is compared with other four filter-
ing methods, including the refined Lee filter [2], IDAN [3],
NLM-pretest [12], and NLSAR [11]. The refined Lee filter
uses a 7 × 7 edge-aligned window, and the IDAN filter adopts
an adaptive neighborhood of maximum size of 50. The free
parameters used in NLM-pretest and NLSAR are the same as
suggested in [11] and [12], respectively. The free parameters
used in the proposed method are listed in Table I. Experimental

results of the refined Lee filter and IDAN filter are obtained by
the PolSARpro toolbox [33]. The implementation code of the
proposed method is available in [34]. In Fig. 3, the pixels in the
white box are used for ENL estimation. The ENL estimation
results for the test POLSAR images are 2.91, and 2.97, respec-
tively. The estimated ENL is used as an input parameter of the
filtering methods.

A. Results With Simulated Images

In this section, we conduct a Monte Carlo experiment where
samples of the simulated image are generated from the real
POLSAR image Flevoland [see Fig. 3(b)]. We first select seven
different homogeneous regions from the real POLSAR image
Flevoland. For each region, we use the ensemble average to
estimate the covariance matrix. Thus, we can get seven covari-
ance matrices which stand for these regions. Fig. 4(a) shows
a segmented image of size 493 × 493. This image also has
seven classes which correspond to the covariance matrices
obtained from Flevoland. For each pixel in Fig. 4(a), we use the
corresponding covariance matrix to simulate the noisy pixel by
the Monte Carlo simulation method in [23]. Fig. 4(b) presents
the simulated noisy image with L = 2. The simulated two-look
speckle which corresponds to Fig. 4(b) is shown in Fig. 5.
In Fig. 4(a), the region in the white box is used for ENL
estimation.

Like that in [35], we also use radiometric parameters, com-
plex correlation parameters, and incoherent decomposition pa-
rameters (H/A/α) to evaluate the filtering performance for
simulated images. Radiometric parameters correspond to the di-
agonal terms of the covariance matrix, i.e., C11, C22, and C33.
Complex correlation parameters correspond to the off-diagonal
terms of the covariance matrix, i.e., C12, C13, and C23. The
amplitudes and the phases of the complex correlation param-
eters will be evaluated separatively. Here, we simply let μ, ρ,
and ϕ denote the radiometric parameters, the amplitudes, and
the phases of the complex correlation parameters, respectively.
Incoherent decomposition parameters (H/A/α) stand for the
polarimetric entropy (H), the anisotropy (A), and the mean
alpha angle (α).

Then, we also use the indicator absolute relative bias which
is proposed in [35] to evaluate the filtering performance for
simulated images. For a given filter f and parameter θ, the
estimated value θ̂ is obtained as the mean value from the pixels
for every scattering class l. The absolute relative bias [35] of θ̂ is

Δθ,f = median
l

{∣∣∣∣∣θl − θ̂l
θl

∣∣∣∣∣
}

(31)

where “median” stands for the median operator and “| · |” is
the absolute value function. In the case of μ, ρ, and ϕ, an
additional median operator [35] is applied to reduce the number
of parameters. Table III reports the filtering results of simulated
data. For the radiometric parameter μ, NLSAR outperforms
other methods with an absolute relative bias of only 0.005.
For complex correlation parameters, the proposed method and
NLSAR outperform other methods. For incoherent decompo-
sition parameters, NLM-pretest, NLSAR, and the proposed
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Fig. 4. Filtered images of the two-look simulated image displayed with Pauli decomposition coefficients. (a) Original image. The pixels in the white box are used
for ENL estimation. (b) Noisy image. (c) Refined Lee filter. (d) IDAN. (e) NLM-pretest. (f) NLSAR. (g) Proposed.

Fig. 5. Simulated two-look speckle.

TABLE III
FILTERING RESULTS FOR SIMULATED DATA. ALL MEASURES,

BUT ENL, ARE ABSOLUTE RELATIVE BIASES. THE BEST

RESULTS ARE EMPHASIZED IN BOLDFACE

method achieve very good performance with absolute relative
biases around 0.01. Table III also presents the ENL [25], [35]
results which indicate the speckle reduction ability in homo-
geneous areas. Larger ENL corresponds to stronger speckle
reduction ability. Thus, we can find that the proposed method
and NLSAR have stronger speckle reduction ability that other
methods.

Fig. 4 shows the filtered images displayed with Pauli decom-
position coefficients. We can find that NLSAR achieves very
impressive filtering performance in both speckle reduction and
detail preserving. The proposed method also has very strong

speckle reduction ability; however, it blurs the edges a little.
The other three methods also blur the details. To focus on the
edge preserving ability, we apply the Canny detector [36] to the
HH polarization channel of the original and filtered images in
Fig. 4, and the results are given in Fig. 6. The performance of
the Canny detector depends on the setting of its parameters. As
suggested in [37], we set the parameters of the Canny detector
that provide the best performance for each filtered image. In
Fig. 6, we provide the standard deviation (σg) of the Gaussian
filter used in the Canny detector for each filtered image. The
other parameters in the Canny detector are the same for all the
filtered images. The refined Lee filter and NLM-pretest filter
introduce some false edges in flat areas. The IDAN filter and
proposed method only produce few false edges in flat areas and
remove few details. Fig. 6(f) is the closest to Fig. 6(a). Thus, in
Fig. 6, NLSAR has the best edge preserving ability.

From Fig. 4, Fig. 6, and Table III, we can conclude that
NLSAR achieves very good filtering performance and the pro-
posed method also provides very competitive results. In this
section, the simulated image only consists of several homoge-
nous regions, and the simulated speckle is white. However, in
real POLSAR images, the speckle is correlated and may not be
fully developed. Thus, we will focus on real POLSAR image
despeckling in Section V-B.

B. Results With Real POLSAR Images

Fig. 7 shows the filtered images of San Francisco displayed
with Pauli decomposition coefficients. The refined Lee filter
blurs the edges in the urban region and introduces artifacts
around the edges. The IDAN filter and the NLM-pretest filter
also remove some details in the urban region. The proposed
method and NLSAR outperform the other methods in urban
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Fig. 6. Edges detected by the Canny method applied to the HH polarization channel of the original and filtered images. (a) Original image, σg = 1.41. (b) Noisy
image, σg = 4.53. (c) Refined Lee filter, σg = 4.24. (d) IDAN, σg = 4.24. (e) NLM-pretest, σg = 4.24. (f) NLSAR, σg = 3.82. (g) Proposed, σg = 3.82.

Fig. 7. Filtered images of San Francisco displayed with Pauli decomposition coefficients. (a) Original image. (b) Refined Lee filter. (c) IDAN. (d) NLM-pretest.
(e) NLSAR. (f) Proposed.

areas. In Fig. 7(a), we select three regions which are marked
by red circles to analyze the point target preserving ability. The
point in region 1 is preserved well by NLM-pretest, NLSAR,

and the proposed method but is blurred by the other methods.
The point in region 2 can be easily found in Fig. 7(b)–(f). There
are two points in region 3. One is strong, and the other is weak.
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Fig. 8. Filtered images of Flevoland displayed with Pauli decomposition coefficients. The filtered images of the region in the white box are shown in Fig. 9.
(a) Original image. (b) Refined Lee filter. (c) IDAN. (d) NLM-pretest. (e) NLSAR. (f) Proposed.

Fig. 9. Filtered images of the region in the white box in Fig. 8(a). (a) Orig-
inal image. (b) Refined Lee filter. (c) IDAN. (d) NLM-pretest. (e) NLSAR.
(f) Proposed.

The strong point can be easily found in Fig. 7(b)–(f). However,
the weak point is only preserved by NLSAR and the proposed
method. Thus, the proposed method and NLSAR have very
strong point target preserving ability.

Fig. 8 shows the filtered images of Flevoland displayed with
Pauli decomposition coefficients. In Fig. 8, we can also find that
the proposed method has very strong detail preserving ability
from the road and the edges of the farmland. Let us focus on
the region in the white box in Fig. 8(a). Filtered images of this
region are shown in Fig. 9. Almost all the details are blurred
by IDAN. The refined Lee filter also blurs a lot of details. The
NLM-pretest filter removes a few details. The proposed method
and NLSAR outperform the other methods and preserve almost
all the details.

TABLE IV
ENL OF FILTERED IMAGES. THE BEST RESULTS

ARE EMPHASIZED IN BOLDFACE

TABLE V
MEAN AND VARIANCE OF RATIO IMAGES. THE BEST

RESULTS ARE EMPHASIZED IN BOLDFACE

Here, we also use the ENL to evaluate the speckle reduction
ability in homogeneous areas. Table IV gives the ENL results
for San Francisco and Flevoland using different filtering meth-
ods. For each image, two homogeneous regions (see Fig. 3) are
selected to estimate the ENL. We can find that the proposed
method and NLM-pretest filter have much stronger speckle
reduction ability than the other methods. In Fig. 8(d) and (e),
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Fig. 10. PDFs of ratio images for San Francisco. The pdf of the actual speckle is used as a reference. “♦”: Actual speckle. “◦”: Refined Lee filter. “•”: IDAN.
“×”: NLM-pretest. “�”: NLSAR. “�”: Proposed method. (a) rhh. (b) rhv. (c) rvv.

the ENL results are not as good as in Fig. 7(d) and (e) since
NLM-pretest and NLSAR produce some artifacts in flat areas.

Another indicator to evaluate the filtering results is the ratio
image which is widely used in SAR image despeckling [38],
[39]. The ratio image is the pointwise ratio between the original
image and filtered image. For example, the ratio image of the
HH channel is

rhh =
C11

Σ̂11

(32)

where Σ̂ is the filtered image. The ratio image stands for the
noise removed by image filtering, and the best result corre-
sponds to the ratio image which is the closest to the actual
speckle. Thus, we should select the regions where the speckle
is fully developed to analyze the ratio image. In general, the
speckle in flat areas such as the grass, short vegetation, and
calm sea with low waves [40] is well developed. In Fig. 3(a),
the pixels in the red box which correspond to the sea and grass
are selected. In Fig. 3(b), the whole image is used to analyze the
ratio image since it is acquired over the farmlands in Flevoland.

Then, the ratio image is analyzed by its mean, variance,
and pdf. The mean and variance of the ratio image indicate
the bias and speckle power suppression [41], respectively. A
mean value of the ratio image close to 1 indicates an unbiased
estimation. Measured ENL results on the original images are
2.91 for San Francisco and 2.97 for Flevoland, respectively.
Thus, the variances of the actual speckle are 0.344 and 0.337
for San Francisco and Flevoland, respectively. The pdf of the
ratio image can evaluate the similarity of the actual speckle and
ratio image.

Table V reports the results of ratio images for San Francisco
and Flevoland, and the best results are shown in boldface.
The results of different channels are quite consistent. From the
results of E[rhh], E[rhv], and E[rvv], we can find that the
proposed method has the smallest bias. From the results of
var[rhh], var[rhv], and var[rvv ], we can conclude that the pro-
posed method outperforms the other methods and has very good
speckle power suppression. Fig. 10 presents the pdfs of ratio
images for San Francisco with logarithmic scale for the y-axis.
The speckle of each channel follows the Gamma distribution,
and the tailing part of the pdf seems like a straight line. The
results of different channels are also very consistent, indicating
that the ratio images obtained by the proposed method are the

closest to the actual speckle. Thus, from the view of the ratio
image, the proposed method performs better than the other
methods.

Here, we would like to discuss why the proposed method
can achieve such performance when handling the homogeneous
and heterogeneous regions. For homogeneous regions such as
the sea in Fig. 7 and the farmland in Fig. 8, the speckle is well
developed and follows the complex Wishart distribution. Thus,
the noise variance is well estimated by (11) and (12) when
dealing with homogeneous regions. The homogeneous regions
are well filtered by SSC, and thus, the proposed method has
very strong speckle reduction ability in homogeneous areas.
For heterogeneous regions such as the urban region in Fig. 7,
the speckle is not well developed, and the noise variance is
underestimated by (11) and (12). The depth of filtering is
relatively low in heterogeneous regions, and thus, the proposed
method has very good detail preserving ability.

C. Effect on the Scattering Characteristics

Here, we use H/α decomposition [42] which extracts the
polarimetric entropy (H) and averaged alpha angle (α) from
the coherency matrix to analyze the effect on the scattering
characteristics. Fig. 11 shows the entropy values of filtered im-
ages for San Francisco. In Fig. 11(a), the entropy obtained from
the original image is relatively low because of insufficient aver-
aging. In Fig. 11(b), we can find that the resolution decreases,
particularly in the city area. The entropy image of IDAN [see
Fig. 11(c)] loses some details in the city and grass areas. In
the entropy images of NLM-pretest [see Fig. 11(d)], NLSAR
[see Fig. 11(e)], and the proposed method [see Fig. 11(f)], the
entropy is relatively low in the sea, and the entropy between the
sea and land can be easily distinguished. However, for the city
and grass areas which consist of complicated scattering mech-
anisms, the proposed method and NLSAR outperform other
methods since both methods preserve most of the scattering
mechanisms.

To further evaluate the effect on the scattering characteristics,
three regions shown in Fig. 11(a) are selected to plot the H/α
parameters. The first region is the ocean area which corresponds
to low entropy surface scatter. The second region is the city
area which has complicated scattering mechanisms. The third
region is the grass area which corresponds to high entropy.
The scatters of the original image [see Fig. 12(a)] disperse on
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Fig. 11. Entropy values of filtered images for San Francisco. Three regions shown in (a) are selected to plot the H/α parameters in Fig. 12. (a) Original image.
(b) Refined Lee filter. (c) IDAN. (d) NLM-pretest. (e) NLSAR. (f) Proposed.

Fig. 12. Scatterplot in the H/α plane of samples from the filtered images for San Francisco. “�”: Sea. “◦”: City. “+”: Grass. (a) Original image. (b) Refined Lee
filter. (c) IDAN. (d) NLM-pretest. (e) NLSAR. (f) Proposed.
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Fig. 13. Filtered results of San Francisco by the proposed method without strong isolated point detection. (a) Filtered image displayed with Pauli decomposition
coefficients. (b) Entropy. (c) Scatterplot in the H/α plane.

the H/α plane. The scatters of different terrains can be distin-
guished after filtering. For the ocean area, the proposed method
and NLM-pretest perform better than other filters because the
scatters of the ocean area intensively converge. For the city
area, the scatters in the proposed method and NLSAR are more
random than in the other filters because the proposed method
and NLSAR retain the complicated scattering mechanisms in
the city area. For the grass area, most of the scatters lie in the
zone of high entropy.

VI. DISCUSSION

In this section, we will discuss the effects of strong point
detection and several parameters. Moreover, the time consump-
tion of the proposed method will also be discussed.

A. Effect of Strong Point Detection

In Section V-B, we have shown that the proposed method has
very strong point target preserving ability. Here, we ascribe the
strong point target preserving ability to the point detection in
the noise variance estimation since the noise variance around
strong points is underestimated. Fig. 13(a) presents the filtered
image of San Francisco by the proposed method without strong
isolated point detection. It can be found that the point in
region 1 is blurred without strong isolated point detection.
A similar phenomenon can also be found from other points.
Thus, strong isolated point detection is an important step in the
proposed method.

Although strong point detection can help to preserve strong
point targets, it will also reduce the speckle filtering power in
the neighborhood of strong targets. Thus, this step will have
a relevant effect in urban areas where many isolated bright
targets can appear due to the presence of trihedral structures.
By comparing Fig. 13(a) with Fig. 7(f), we can find that the step
of strong point detection reduces the speckle filtering power a
little in urban areas. In Fig. 13, we also provide the entropy
and scatterplot results obtained by the proposed method without
strong isolated point detection. In Fig. 13(b), we can see that
the point targets are a little blurred. However, the entropy result

TABLE VI
RESULTS OF THE ABSOLUTE RELATIVE BIASES FOR DIFFERENT

PARAMETERS. FOR EACH CASE, THE CHANGED

PARAMETER IS EMPHASIZED IN BOLDFACE

around the point targets is better than that in Fig. 11(f). In
Fig. 13(c), the scatters in the urban area are not so disperse like
that in Fig. 12(f). Thus, it is an important topic to reduce the
influence of strong point detection, particularly in urban areas,
and we will focus on this problem in our future work.

B. Discussion on Parameter Tuning

In this section, we mainly use the simulated image to discuss
the influences of three parameters, B1, n, and SL. The indica-
tors used in Section V-A are also adopted here. Table VI reports
the results of the absolute relative biases for different parame-
ters. Other free parameters are the same as in Table I.

We can find that the absolute relative biases of μ, ρ, and A
are relatively large when B1 = 3. The simulated image [see
Fig. 4(b)] is composed of homogenous areas. Thus, the results
are better when B1 = 7. However, the filtering performance
improves only a little when B1 = 7. Thus, in this paper, we
just set B1 = 5. In Table VI, one can see that the differences
between the first row (SL = 2), the fourth row (SL = 1), and
the fifth row (SL = 3) are very small. Thus, the influence on
the filtering performance is very small when SL = 2, and it
is reasonable to set SL to be 2. When n = 12, the absolute
relative biases of incoherent decomposition parameters change
a little. However, for μ, ρ, and ϕ, the results of absolute relative
biases increase about 0.005–0.019. Thus, we do not suggest to
use patches of size 12 × 12 here.
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TABLE VII
COMPUTING TIME OF EACH STEP FOR FLEVOLAND

TABLE VIII
COMPUTING TIME FOR FLEVOLAND WITH DIFFERENT PARAMETERS.

OTHER PARAMETERS ARE GIVEN IN TABLE I

C. Time Consumption

In Table VII, we report the computing time of the proposed
method for Flevoland. The code [34] of the proposed method
was written in C source MEX-file and run by MATLAB, and
the PC used to run this code had an Intel Core i5 processor
with 2.80-GHz main frequency and 8.00-GB main memory. It
typically takes around 50 s for the proposed method to denoise
a 400 × 600 POLSAR image. In addition, Table VII also gives
the computing time of each step. It can be found that SSC is
quite time consuming. The computing time of SSC takes about
75% of the total time. Here, we can use parallel computing to
further reduce the computing time of SSC. With the help of the
parallel computing technology, the time complexity of the pro-
posed method is acceptable in polarimetric SAR applications.

As stated in Section IV, the parameters n and SL can
significantly affect the computing time of the proposed method.
Table VIII presents the computing time for Flevoland with
different parameters. The computing time in the second con-
dition (SL = 1) is about three times larger than that in the
first condition (SL = 2), and this is quite consistent with (30).
Thus, we can greatly reduce the computing time by setting SL
to be 2. In the third row of Table VIII, the computing time
increases a lot with the increase of n. Thus, from the view of
time consumption, we also do not suggest to use big patches.
We reduce the size of Flevoland to 200 × 300 by simply
sampling every other pixel, and the corresponding computing
time is about 23 s. In fact, the computing time of SSC is
proportional to the size of the image. Thus, the computing time
of the proposed method is also approximately proportional to
the size of the image.

VII. CONCLUSION

In this paper, a transform-domain filtering method for
POLSAR images was proposed. We developed a signal-
dependent additive noise model for the full POLSAR data
and extended the patch ordering algorithm based on POLSAR
statistics. With the derived additive noise model, we then per-
formed sparse reconstruction using SSC on the ordered patches.
The final result was reconstructed from the filtered patches via
inverse permutation and subimage averaging.

We used both simulated and real POLSAR images to vali-
date the effectiveness of the proposed method. For simulated
images, the results show that the proposed method achieves
very good performance in terms of the radiometric parameters,
complex correlation parameters, and incoherent decomposition
parameters and has very good edge preserving ability. For
real POLSAR images, we used the ENL, ratio image, and
H/α decomposition to evaluate the filtering performance. The
proposed method has very strong speckle reduction ability
and detail preserving ability. Moreover, the corresponding ratio
image is the closest to the actual speckle. The results of H/α
decomposition also show that the proposed method converges
the same scattering mechanism and retains the complicated
scattering mechanisms effectively.

As future works, the proposed method may benefit from
improved dictionary learning in the context of nonuniform
noise which is still a challenging problem. In addition, we
will also try to reduce the influence of strong point detection,
particularly in urban areas.

APPENDIX A
DERIVATION OF THE NOISE VARIANCE

In this appendix, we derive the variances of elements in Z.
Let A=LC. As stated in [24], the characteristic function of the
variablesA11, . . . ,A33,2Re(A12),2Im(A12), . . . ,2Re(A23),
2Im(A23) is

ΦA(Θ) = E [exp (jTr(AΘ))]

= |Σ|−L|Σ−1 − jΘ|−L

= |I− jΣΘ|−L (33)

whereE[·] stands for the expectation operation,Θis a Hermitian
matrix, and I is the identity matrix.

By setting

Θ =

⎡
⎣θ 0 0
0 0 0
0 0 0

⎤
⎦ (34)

we obtain the characteristic function of A11

ΦA11
(θ) = E [exp(jA11θ)]

= (1− jΣ11θ)
−L. (35)

Then, we can calculate the first-order and the second-order
moment of A11 from (35)

E[A11] =

[
1

j

dΦA11
(θ)

dθ

]∣∣∣∣
θ=0

= LΣ11 (36)

E
[
A2

11

]
=

[
−d2ΦA11

(θ)

dθ2

]∣∣∣∣
θ=0

= (L2 + L)Σ2
11 (37)

respectively. Thus, the variance of A11 is

var[A11] = LΣ2
11. (38)
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The variance of Z11 is

var[Z11] = var[C11]

=
var[A11]

L2

=
Σ2

11

L
. (39)

The variances ofZ22 andZ33 can be calculated in the same way.
By setting

Θ =

⎡
⎣0 θ

2 0
θ
2 0 0
0 0 0

⎤
⎦ (40)

we get the characteristic function of Re(A12), shown in

ΦRe(A12)(θ) = E [exp (jRe(A12)θ)]

=

(
1 +

1

4
θ2Σ11Σ22 −

1

4
θ2Re(Σ12)

2

− 1

4
θ2Im(Σ12)

2 − jRe(Σ12)θ

)−L

. (41)

The first-order and the second-order moment of Re(A12) are

E[Re(A12)] = LRe(Σ12) (42)
E
[
Re(A12)

2
]
= L2Re(Σ12)

2

+
L

2

[
Re(Σ12)

2−Im(Σ12)
2+Σ11Σ22

]
(43)

respectively. Thus, the variance of Re(A12) is

var [Re(A12)] =
L

2

[
Re(Σ12)

2−Im(Σ12)
2+Σ11Σ22

]
. (44)

The variance of Re(Z12) is

var [Re(Z12)]=
1

2L

[
Re(Σ12)

2−Im(Σ12)
2+Σ11Σ22

]
. (45)

In the same way, we can also obtain the variances of Re(Z13)
and Re(Z23).

By setting

Θ =

⎡
⎣ 0 jθ

2 0
−jθ/2 0 0

0 0 0

⎤
⎦ (46)

we obtain the characteristic function of Im(A12), shown in

ΦIm(A12)(θ) = E [exp (jIm(A12)θ)]

=

(
1 +

1

4
θ2Σ11Σ22 −

1

4
θ2Re(Σ12)

2

− 1

4
θ2Im(Σ12)

2 − jIm(Σ12)θ

)−L

. (47)

We can find that (47) can be obtained from (41) by replacing
Re(A12) with Im(A12). Thus, we can immediately get the
variance of Im(Z12)

var [Im(Z12)] =
1

2L

[
Im(Σ12)

2−Re(Σ12)
2+Σ11Σ22

]
. (48)

Then, we can obtain similar results of Im(Z13) and Im(Z23) in
the same way.
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